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Abstract. We investigate the quantum transport through a mesoscopic device consisting of an open, lateral
double-quantum-dot coupled by time oscillating and spin-polarization dependent tunneling which results
from a static magnetic field applied in the tunneling junction. In the presence of a non-vanishing bias
voltage applied to two attached macroscopic leads both spin and charge currents are driven through the
device. We demonstrate that the spin and charge currents are controllable by adjusting the gate voltage,
the frequency of driving field and the magnitude of the magnetic field as well. An interesting resonance
phenomenon is observed.

PACS. 72.10.Bg General formulation of transport theory – 72.25.-b Spin polarized transport – 73.23.-b
Electronic transport in mesoscopic systems

1 Introduction

Traditional electronics is based on the charge transport
and the spin degree of electrons does not play a role. The
idea of electronic devices that exploit both the charge and
spin degrees of electrons has led to a new field known
as spintronics. In the devices consisting of open quan-
tum dots electrons can freely enter and exit the dots via
leads that support one or more propagating modes. Spin-
polarized transports in open quantum dots have attracted
considerable attentions recently since these devices not
only exhibit the new fundamental physics but also are
of promising applications in the emerging technologies
of spintronics and quantum information [1,2]. Thus it
is of great importance to generate and control the spin-
dependent current. Recent experimental advances in spin-
tronics have stimulated an impetus to study spin-polarized
transport. A spin current is produced by the motion of
spin-polarized electrons and the mechanism of realization
of spin current relies on spin-orbit coupling to couple the
local spin of material to the conduction electrons. Spin-
polarized transport occurs naturally in any material with
an imbalance of the spin populations at the Fermi level
which is the characteristic of ferromagnetic metals [3]. Tra-
ditionally, spin injection from a ferromagnetic material to
a normal metal or semiconductor material has been used
to obtain spin-polarized charge current. More recently,
several theoretical proposals of spin-battery were reported
for the generation of spin-current [4–7]. In this paper, we
present a new type of mechanism for generation of the
spin-polarized current based on the Larmor precession of
spin in magnetic field which is confined inside the tun-
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Fig. 1. Schematic diagram for the lateral double-quantum-dot
coupled to two leads.

neling barrier between two quantum dots. It was demon-
strated long ago by Büttiker [8] that the main effect of the
magnetic field on the spin of particle which penetrates the
barrier is to align the spin with the field since the particle
with spin parallel to the magnetic field has lower energy
and less decay rate (hence higher tunneling rate) in barrier
region than that of particle with spin antiparallel to the
magnetic field. The advantage of the device is that both
the spin and charge currents are controllable by adjusting
of the magnetic field.

The system we examine is schematically shown in Fig-
ure 1 which consists of a double-quantum-dot (DQD) fab-
ricated in two-dimensional electron gas and each quantum
dot (QD) is contacted by an electrode. The two electrodes
maintain a difference of electrochemical potential µL−
µR = V > 0 i.e. a bias voltage to generate the charge cur-
rent. There is no magnetic material involved in our device.
We control the QD ’s energy levels by an overall gate volt-
age Vg. A controllable external magnetic field B is applied
in the barrier region (perpendicular to the QD plane) be-
tween two QDs in order to generate the imbalance tunnel-
ing probabilities between spins parallel and antiparallel to
the magnetic field as demonstrated earlier. Moreover the
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weak coupling between two QDs is assumed to be time-
dependent driven by a time-oscillation microwave field.

2 Model and formulation

Our system of DQD coupled to two leads is described by
the following Hamiltonian:

H = HDQD + HT +
∑

α(α=L,R)

Hα (1)

with
Hα =

∑

kσ

εkαC+
kασCkασ , (2)

HT =
∑

kασ

(TkαC+
kασdασ + H.c.), (3)

HDQD =
∑

ασ

εασd+
ασdασ

+
∑

σ

(
gesignσ�Eeiwtd+

LσdRσ + c.c.
)
. (4)

Hα (α = L, R) describes the non-interacting left and right
leads. C+

kασ (with σ =↑, ↓ ) is the creation operator of elec-
trons with momentum k and spin index σ in the lead-α.
HT denotes the coupling between one of the DQD and the
adjacent lead with coupling matrix elements Tkα. HDQD

models the coupled DQD, in which each QD has a single
level ε = ε0 + eVg which is double degenerate in spin in-
dex σ and can be controlled by the gate voltage Vg where e
denotes the absolute value of electron charge. dασ denotes
the annihilation operator of electron with spin index σ in
the dot-α. The coupling between DQD with coupling con-
stant g is modulated by a time-oscillation microwave of
frequency w. An external magnetic field B is superposed
on the tunnel junction such that the tunnel coupling is
modified by a factor esignσ�E (signσ = ±1, for σ =↑, ↓
respectively). The small parameter �E is proportional to
the magnitude of the external magnetic field. It is obvi-
ously that the factor leads to a slightly higher tunneling
rate for spin parallel to the magnetic field (signσ = +1)
than antiparallel case (signσ = −1).

In the following, we study the spin-dependent quan-
tum transport using the standard keldysh nonequilibrium
Green’s function (NEGF) technique [9,10] in terms of
which the spin-dependent current can be evaluated ex-
plicitly. To this end we define the spin-dependent current
operator [5] in the lead-α as

Jασσ′ ≡
∑

k

d[C+
kασCkασ′ ]

dt
=

1
i�

∑

k

[C+
kασCkασ′ , H ], (5)

and then the current operator from the left contact to the
left dot is seen to be

JLσσ′ = −i
∑

k

[TkLC+
kLσdLσ′ − T ∗

kLd+
LσCkLσ′ ]. (6)

The electric current operator is defined by [5]

JLq = −e
∑

σ

JLσσ = −e(JL↑↑ + JL↓↓), (7)

and the spin-current operator with spin component σ is [5]

JLs =
1
2

∑

σσ′
JLσσ′ σz

σσ′ (8)

where σz is Pauli matrix.
The spin-dependent current can be computed from

current operator equation (6)

ILσσ′ (t) ≡ 〈JLσσ′ (t)〉 = −
∑

k

[TkLG≺
Lk,σσ′ (t, t)

− T ∗
kLG≺

kL,σ′σ(t, t)] (9)

where the nonequilibrium Green’s functions (NEGFs) are
defined as

G≺
Lk,σ′σ(t, t

′
) ≡ i〈C+

kLσ(t
′
)dLσ′ (t)〉,

G≺
kL,σ′σ(t, t

′
) ≡ i〈d+

Lσ(t
′
)CkLσ′ (t)〉.

For the case of noninteracting leads, a general relation
for the contour-ordered Green functions GLk,σσ′ (t, t

′
) be-

tween the left dot and left lead can be derived rather easily
either with the equation-of-motion technique or by a di-
rect expression of the S matrix [9] and the result is

GLk,σσ′ (t, t
′
) =

∑

σ

∫
dt1GLL,σσ(t, t1)T ∗

kLgkL,σσ′ (t1, t
′
).

(10)
Using the set of operational rules given by Langreth [11]
that if one has an expression for Green functions such that
A =

∫
BC on the contour, the retarded and lesser Green

functions are given by

Ar(t, t
′
) =

∫
dt1B

r(t, t1)Cr(t1,t
′
)

and

A≺(t, t
′
) =

∫
dt1[Br(t, t1)C≺(t1,t

′
) + B≺(t, t1)Ca(t1, t

′
)]

respectively, we can write the lesser Green’s functions as

G≺
Lk,σσ′ (t, t

′
) =

∑

σ

∫
dt1T

∗
kL[Gr

LL,σσ(t, t1)g≺kL,σσ′ (t1,t
′
)

+ G≺
LL,σσ(t, t1)ga

kL,σσ′ (t1,t
′
)] (11)

G≺
kL,σ′σ(t, t

′
) = −

[
G≺

Lk,σσ′

]∗

=
∑

σ

∫
dt1TkL

[
g≺

kL,σ′σ(t
′
, t1)Ga

LL,σσ(t1,t)

+gr
kL,σ′σ(t

′
, t1)G≺

LL,σσ(t1,t)
]
. (12)
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where the superscript a denotes the advanced Green
function.

Using equations (11, 12) the particle current defined
by equation (9) is seen to be

IL,σσ′ (t) = −
∫ t

−∞
dt1

∑

σ

{Gr
LL,σσ(t, t1)Σ≺

L,σσ′ (t1,t)

+ G≺
LL,σσ(t, t1)Σa

Lσσ′ (t1, t)

− Σ≺
Lσ′σ(t, t1)Ga

LL,σσ(t1, t)

− Σr
L,σ′σ(t, t1)G≺

LL,σσ(t1, t)}, (13)

where

Σγ

L,σσ′ (t1, t2) =
∑

k

TkLT ∗
kLgγ

kL,σσ′ (t1, t2) (14)

is the self-energy with γ = r, a, < respectively.
The time-average current is

IL,σσ′ =− 1
2Nτ

∫ Nτ

−Nτ

dt

∫ t

−∞
dt1

[
Gr

LL,σσ(t, t1)Σ≺
L,σσ′ (t1, t)

+G≺
LL,σσ(t, t1)Σa

L,σσ′ (t1, t) + c.c.
]

(15)

where the integration duration is [−Nτ , Nτ ] with
Nτ → ∞. With the following double-time Fourier trans-
formation

Gγ(t1, t2) =
∫

dE1

2π

∫
dE2

2π
e−iE1t1+iE2t2Gγ(E1, E2)

(16)
the average current equation (15) becomes

IL,σσ′ = − 1
2Nτ

∫
dE1

2π

∫
dE2

2π

∑

σ

{[Gr
LL,σσ(E1, E2)

− Ga
LL,σσ(E1, E2)]Σ≺

L,σσ′ (E2, E1)

+ G≺
LL,σσ(E1, E2)[Σa

L,σσ′ (E2, E1)

− Σr
L,σσ′ (E2, E1)]}. (17)

Under steady-state conditions the self-energy functions
are purely diagonal in energy space and we obtain from
equation (14)

Σ≺
L,σσ′ (E1, E2) = 2πiδ(E1−E2)ΓL(E1)fL(E1)δσσ′ . (18)

The matrix ΓL(E) denotes the line-width function de-
fined by

ΓL(E) ≡ 2πρL(E) |TkL(E)|2 , (19)

where ρL(E) is the density of states in the left lead, and

fα(E) = {exp[(E − µα)/kT ] + 1}−1 (20)

is the Fermi distribution of the lead-α.
Substituting the self-energy function Σ≺

Lσσ′ (E1, E2)
given by equation (18) into equation (17), the current from

the left lead flowing to the DQD is obtained as

IL,σσ′ =
−i

2Nτ

∫
dE1

2π
{[Gr

σσ′ (E1, E1)

− Ga
σσ′ (E1, E1)]LLΓL(E1)fL(E1)

+ G≺
LL,σσ′ (E1, E1)ΓL(E1)}. (21)

In the steady state [9] the current is uniform such that
I = IL = −IR and

I =
IL − IR

2

where IR denotes the current from the right dot flowing
to the device. The particle current through the device can
be written as

Iσσ′ =
−i

4Nτ

∫
dE1

2π
[ΓL(E1) − ΓR(E1)]G≺

LL,σσ′ (E1, E1)

+ [fL(E1)ΓL(E1) − fR(E1)ΓR(E1)]
× [Gr

σσ′ (E1, E1) − Ga
σσ′ (E1, E1)]LL. (22)

Using the identity of the Green functions between two dots

(Gr − Ga)ij = −iGr
iLΓLGa

Lj − iGr
iRΓRGa

Rj (23)

where i, j = L, R and keldysh equation

G≺
jk = Gr

jLΣ≺
L Ga

Lk + Gr
jRΣ≺

RGa
Rk (24)

we obtain spin-dependent current

Iσσ′ =
−i

4Nτ

∫
dE1

2π

∫
dE2

2π
(ΓL(E1) − ΓR(E1))

×[Gr
LL,σσ1

(E1, E2)ΓL(E2)ifL(E2)Ga
LL,σ1σ′ (E2, E1)

+ Gr
LR,σσ1

(E1, E2)ΓR(E2)ifR(E2)

× Ga
RL,σ1σ′ (E2, E1)] + [ΓL(E1)fL(E1)

− ΓR(E1)fR(E1)][−iGr
LL,σσ1

(E1, E2)ΓL(E2)

× Ga
LL,σ1σ′ (E2, E1) − iGr

LR,σσ1
(E1, E2)ΓR(E2)

× Ga
RL,σ1σ′ (E2, E1)]. (25)

Thus the current of spin parallel to the magnetic field is

I↑↑ =
1

4Nτ

∫
dE1

2π

∫
dE2

2π
Γ 2

L[fL(E2)

− fL(E1)][Gr
LL,↑↑(E1, E2)Ga

LL,↑↑(E2, E1)

+ Gr
LL,↑↓(E1, E2)Ga

LL,↓↑(E2, E1)] + Γ 2
R[fR(E1)

− fR(E2)][Gr
LR,↑↑(E1, E2)Ga

RL,↑↑(E2, E1)

+ Gr
LR,↑↓(E1, E2)Ga

RL,↓↑(E2, E1)] + ΓLΓR[fR(E2)

− fL(E1)][Gr
LR,↑↑(E1, E2)Ga

RL,↑↑(E2, E1)

+ Gr
LR,↑↓(E1, E2)Ga

RL,↓↑(E2, E1)] + ΓLΓR[fR(E1)

− fL(E2)][Gr
LL,↑↑(E1, E2)Ga

LL,↑↑(E2, E1)

+ Gr
LL,↑↓(E1, E2)Ga

LL,↓↑(E2, E1)], (26)
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and current of spin antiparallel to the magnetic field is

I↓↓ =
1

4Nτ

∫
dE1

2π

∫
dE2

2π
Γ 2

L[fL(E2)

− fL(E1)][Gr
LL,↓↓(E1, E2)Ga

LL,↓↓(E2, E1)

+ Gr
LL,↓↑(E1, E2)Ga

LL,↑↓(E2, E1)] + Γ 2
R[fR(E1)

− fR(E2)][Gr
LR,↓↓(E1, E2)Ga

RL,↓↓(E2, E1)

+ Gr
LR,↓↑(E1, E2)Ga

RL,↑↓(E2, E1)] + ΓLΓR[fR(E2)

− fL(E1)][Gr
LR,↓↓(E1, E2)Ga

RL,↓↓(E2, E1)

+ Gr
LR,↓↑(E1, E2)Ga

RL,↑↓(E2, E1)] + ΓLΓR[fR(E1)

− fL(E2)][Gr
LL,↓↓(E1, E2)Ga

LL,↓↓(E2, E1)

+ Gr
LL,↓↑(E1, E2)Ga

LL,↑↓(E2, E1)]. (27)

Here we take the wide-bandwidth approximation, under
which the line-width ΓL(ΓR) is independent of the en-
ergy [12,13] ε. Therefore the transport problem is re-
duced to the calculation of the retarded Green’s func-
tions Gr

LL,σσ′ (E1, E2), Gr
LR,σσ′ (E1, E2). To this end we

regard the term, which explicitly depends on time t, in
the Hamiltonian equation (1) as the interacting part HI

such that H0 ≡ H − HI . The Green’s functions for the
Hamiltonian H0 denoted by G0r

LL,σσ′ (ε), and G0r
RR,σσ′ (ε)

can be easily obtained in terms of the equation of mo-
tion as

G0r
LL,σσ′ (ε) =

δσσ′

ε − εLσ + i
2ΓL

, (28)

G0r
RR,σσ′ (ε) =

δσσ′

ε − εRσ + i
2ΓR

. (29)

The full Green’s functions for Hamiltonian equation (1)
are then calculated from the Dyson equation

Gr
LL,σσ′ (E1, E2) = 2πG0r

LL,σσ′ (E1)δ(E1 − E2)

+
∫

dE

2π
Gr

LR,σσ1
(E1, E + E2)Σr

RL,σ1σ2
(E)G0r

LL,σ2σ′ (E2),

(30)

with

Gr
LR,σσ′ (E1, E2) =

∫
dE

2π
Gr

LL,σσ1
(E1, E + E2)

× Σr
LR,σ1σ2

(E)G0r
RR,σ2σ′ (E2) (31)

where the retarded self-energy Σr
LR,σ1σ2

(E) is the Fourier
transformation of Σr

LR,σ1σ2
(t) which is seen to be

Σr
LR,σ1σ2

(t) = [Σr
RL,σ1σ2

(t)]∗ = gesignσ1�Eeiwtδσ1σ2

(32)
and

Σr
LL,σ1σ2

(t) = Σr
RR,σ1σ2

(t) = 0. (33)

The Fourier transformation is obtained as

Σr
LR,σ1σ2

(E) = 2πδ(E + w)gesignσ1�Eδσ1σ2 (34)

and

Σr
RL,σ1σ2

(E) = 2πδ(E − w)gesignσ1�Eδσ1σ2 . (35)

Substituting equations (31, 34, 35) into equation (30) the
retarded Green’s functions in the left dot can be obtained,
after tedious but straightforward algebra, explicitly as

Gr
LL,↑↑(E1, E2) =

2πδ(E1 − E2)G0r
LL,↑↑(E1)

1 − (ge�E)2G0r
RR,↑↑(E2 + w)G0r

LL,↑↑(E2)
, (36)

Gr
LL,↓↓(E1, E2) =

2πδ(E1 − E2)G0r
LL,↓↓(E1)

1 − (ge−�E)2G0r
RR,↓↓(E2 + w)G0r

LL,↓↓(E2)
, (37)

and
Gr

LL,↑↓(E1, E2) = Gr
LL,↓↑(E1, E2) = 0.

The Green function between two dots is evaluated from
equation (31) and the result is

Gr
LR,↑↑(E1, E2) =

2πδ(E1 − E2 + w)ge�EG0r
RR,↑↑(E2)G0r

LL,↑↑(E1)
1 − (ge�E)2G0r

RR,↑↑(E2)G0r
LL,↑↑(E2 − w)

(38)

for the spin parallel to the magnetic field and

Gr
LR,↓↓(E1, E2) =

2πδ(E1 − E2 + w)ge−�EG0r
RR,↓↓(E2)G0r

LL,↓↓(E1)
1 − (ge−�E)2G0r

RR,↓↓(E2)G0r
LL,↓↓(E2 − w)

, (39)

for the spin antiparallel to the magnetic field. There is no
spin flip through the tunnel junction i.e.

Gr
LR,↑↓(E1, E2) = Gr

LR,↓↑(E1, E2) = 0. (40)

We finally obtain the spin-polarized currents from equa-
tions (26) and (27) as

I↑↑ =
1
2

∫
dE

2π





Γ 2

R[fR(E) − fR(E + w)]

×
(ge�E)2

∣∣∣G0r
RR,↑↑(E + w)

∣∣∣
2 ∣∣∣G0r

LL,↑↑(E)
∣∣∣
2

∣∣∣1 − (ge�E)2G0r
RR,↑↑(E + w)G0r

LL,↑↑(E)
∣∣∣
2

+ ΓLΓR[fR(E + w) − fL(E)]

×
(ge�E)2

∣∣∣G0r
RR,↑↑(E + w)

∣∣∣
2 ∣∣∣G0r

LL,↑↑(E)
∣∣∣
2

∣∣∣1 − (ge�E)2G0r
RR,↑↑(E + w)G0r

LL,↑↑(E)
∣∣∣
2

+ ΓLΓR[fR(E) − fL(E)]

×

∣∣∣G0r
LL,↑↑(E)

∣∣∣
2

∣∣∣1 − (ge�E)2G0r
RR,↑↑(E + w)G0r

LL,↑↑(E)
∣∣∣
2





(41)
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and

I↓↓ =
1
2

∫
dE

2π





Γ 2

R[fR(E) − fR(E + w)]

×
(ge−�E)2

∣∣∣G0r
RR,↓↓(E + w)

∣∣∣
2 ∣∣∣G0r

LL,↓↓(E)
∣∣∣
2

∣∣∣1 − (ge−�E)2G0r
RR,↓↓(E + w)G0r

LL,↓↓(E)
∣∣∣
2

+ ΓLΓR[fR(E + w) − fL(E)]

×
(ge−�E)2

∣∣∣G0r
RR,↓↓(E + w)

∣∣∣
2 ∣∣∣G0r

LL,↓↓(E)
∣∣∣
2

∣∣∣1 − (ge−�E)2G0r
RR,↓↓(E + w)G0r

LL,↓↓(E)
∣∣∣
2

+ ΓLΓR[fR(E) − fL(E)]

×

∣∣∣G0r
LL,↓↓(E)

∣∣∣
2

∣∣∣1 − (ge−�E)2G0r
RR,↓↓(E + w)G0r

LL,↓↓(E)
∣∣∣
2






(42)

where we have used the identity 2πδ(0) =
∫

dE = 2Nτ .
From these two equations (41, 42) one can conclude that
the charge current is given by

Iq = −e(I↑↑ + I↓↓) (43)

and the spin current is

Is =
1
2
(I↑↑ − I↓↓). (44)

3 Numerical results

We consider the symmetric coupling barriers for the sake
of simplicity i.e. ΓL(E) = ΓR(E) = Γ

2 and further as-
sume that the gate voltage Vg controls the energy level of
the quantum dots such that εL(Vg) = εR(Vg) = ε(Vg) =
ε0 + eVg, where ε0 denotes single-electron energy in the
left and right QDs without the gate voltage Vg. The cou-
pling constant Γ is chosen as the energy unit. We also set
� = e = 1. Figure 2 shows the charge current Iq (Fig. 2a)
and the spin current Is (Fig. 2b) versus the magnetic
field-dependent tunneling-parameter �E at zero temper-
ature T = 0. Similar results are obtained at low temper-
atures [14]. Other parameter values used in Figure 2 are
such that µL = 10, µR = 0, Vg = 6, w = 10 and g = 0.1. It
is clearly shown that the electron with spin parallel to the
magnetic field has lower energy in the barrier region and
hence the higher tunneling rate (current). The situation
is just opposite for the electron with spin antiparallel to
the magnetic field. Therefore, the spin current increases
with the magnetic field. The total current Iq decreases
slightly with the increase of �E. The polarizability Is/Iq

as a function of the parameter �E is shown in Figure 2c.

(a)

(b)

(c)

Fig. 2. The charge current Iq (a) and spin current Is (b) versus
the coupling �E for a symmetric structureΓL = ΓR = Γ

2
with

energies measured in unit of Γ (µL = 10, µR = 0, Vg = 6,
w = 10, g = 0.1) and polarizability IS

Iq
(c).

Figure 3 displays Iq (Fig. 3a) and Is (Fig. 3b) as a
function of gate voltage Vg with different external bias
V ≡ µL−µR. We can see that the resonant charge current
Iq varies from zero to large values under the control of the
gate voltage Vg. The maximum charge current in the plot
extends to a plateau with the corresponding range of gate-
voltage values from Vg = µL, to Vg = µR. While resonant
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(a)

(b)

Fig. 3. The charge current Iq(a) and the spin current Is (b)
as a function of gate voltage Vg at different external bias V ≡
µL−µR with �E = 3.0; V = 10 (µL = 10, µR = 0) (solid line),
V = 7 (µL = 10, µR = 3) (dotted line) V = 4 (µL = 6, µR = 2)
(dashed line).

spin current Is has a peak at gate voltage values Vg = µL,
µR respectively.

Figure 4 depicts the charge current Iq (Fig. 4a) and the
spin current Is (Fig. 4b) as a function of frequency w of
driving field at zero temperature [14] with different gate
voltages and g = 0.1, �E = 3.0, µL = 10, µR = 0. We
observe, perhaps, a most interesting phenomenon of reso-
nance that both the charge current Iq and the current I↑↑
with spin parallel to the magnetic field display a minimum
at the certain value of field frequency. We may call this
antiresonance as resonance-block since at the resonance
frequency the oscillating probability current of electron
between two QDs reaches the maximum value [15] and
therefore the transport current is suppressed dramatically.
The spin current Is has a maximum value at the resonance
frequency due to the imbalance variation of the currents
I↑↑ and I↓↓. This resonance-block phenomenon may have
technical applications in electronic devices, for instance,
to make an frequency (of driving-field) controlled switch
for both spin and charge currents. It may be useful to
estimate the practical value of magnetic field for genera-
tion of the spin current in our system. For the tempera-

(a)

(b)

Fig. 4. The charge current Iq (a) and the spin current Is (b)
as a function of frequency w at different gate voltage with
�E = 3.0, Vg = 3 (dotted line) Vg = 5 (dashed line).

ture scale kBT = 0.01 meV [14,16] and coupling constant
Γ = 10 µeV as in typical QD experiments, the magnitude
of magnetic field is B ∼ 0.16/g0 tesla where g0 is effective
electron g-factor.

4 Conclusion

In summary, we have proposed a new type of device to
generate the spin-polarized currents which are controllable
by the external field. It is demonstrated that the spin-
polarized current can be produced by a static magnetic
field applied in the tunneling junction region unlike the
usual device where a rotating field is required to cause the
spin flip. A general formula for the charge and spin cur-
rents flowing through such a device is derived using the
NEGF method and the spin polarized currents as func-
tions of gate voltage, the frequency of driving field and
the magnitude of the magnetic field are studied explicitly.
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